Problem 1-2

Determine the resultant internal normal and shear force in the member at (a) section $a-a$ and (b) section $b-b$, each of which passes through the centroid A. The $500-\mathrm{lb}$ load is applied along the centroidal axis of the member.

Prob. 1-2

Solution

Part (a)

Use the method of sections to determine the shear and normal forces at A, using cross-section $a-a$.

Also, use the equilibrium conditions.

$$
\begin{aligned}
& \sum F_{x}=N_{a}-500=0 \\
& \sum F_{y}=V_{a}=0
\end{aligned}
$$

Solve for the normal and shear forces.

$$
\begin{aligned}
N_{a} & =500 \mathrm{lb} \\
V_{a} & =0
\end{aligned}
$$

Part (b)

Use the method of sections to determine the shear and normal forces at A, using cross-section $b-b$.

Also, use the equilibrium conditions.

$$
\begin{aligned}
& \sum F_{x}=V_{b} \cos 60^{\circ}+N_{b} \cos 30^{\circ}-500=0 \\
& \sum F_{y}=V_{b} \sin 60^{\circ}-N_{b} \sin 30^{\circ}=0
\end{aligned}
$$

The aim is to solve for V_{b} and N_{b}.

$$
\begin{aligned}
\frac{V_{b}}{2}+\frac{\sqrt{3} N_{b}}{2}-500 & =0 \\
\frac{\sqrt{3} V_{b}}{2}-\frac{N_{b}}{2} & =0
\end{aligned}
$$

Multiply both sides of the first equation by 2 , and solve the second equation for N_{b}.

$$
\begin{aligned}
V_{b}+\sqrt{3} N_{b} & =1000 \\
\sqrt{3} V_{b} & =N_{b}
\end{aligned}
$$

Substitute this formula for N_{b} into the first equation and solve for V_{b}.

$$
\begin{gathered}
V_{b}+\sqrt{3}\left(\sqrt{3} V_{b}\right)=1000 \\
4 V_{b}=1000 \\
V_{b}=250 \mathrm{lb}
\end{gathered}
$$

Therefore,

$$
N_{b}=\sqrt{3}(250 \mathrm{lb}) \approx 433 \mathrm{lb} .
$$

